Abstract

-non-degenerate spaces are spacetimes that can be characterized uniquely by their scalar curvature invariants. The ultimate goal of the current work is to construct a basis for the scalar polynomial curvature invariants in three-dimensional Lorentzian spacetimes. In particular, we seek a minimal set of algebraically independent scalar curvature invariants formed by the contraction of the Riemann tensor and its covariant derivatives up to fifth order of differentiation. We use the computer software Invar to calculate an overdetermined basis of scalar curvature invariants in three dimensions. We also discuss the equivalence method and the Karlhede algorithm for computing Cartan invariants in three dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.