We study correlations functions of magnetic vortices $V$ and Polyakov loop $P$ operators in the 2+1 dimensional Georgi-Glashow model in the vicinity of the deconfining phase transition. In this regime the (dimensionally reduced) model is mapped onto a free theory of two massive Majorana fermions. We utilize this fermionic representation to explicitly calculate the expectation values of $V$ and $P$ as well as their correlators. In particular we show that the $VV$ correlator is large, and thus the anomalous breaking of the magnetic $U(1)$ symmetry is order one effect in the near critical region. We also calculate the contribution of magnetic vortices to the entropy and the free energy of the system.