Abstract

We draw an analogy between the deconfining transition in the (2+1)-dimensional Georgi-Glashow model and the chiral phase transition in (3+1)-dimensional QCD. Based on the detailed analysis of the former we suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of baryons and antibaryons. The chiral symmetry is restored when roughly half of the volume is occupied by the baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical temperature gives ${T}_{c}=180 \mathrm{MeV}.$ In this scenario the binding of the instantons is not the cause but rather a consequence of the chiral symmetry restoration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.