This study investigates the alteration of felsic sandstone-type rock, which is used as a coarse aggregate in concrete, subject to the effects of gamma-ray and neutron irradiation. The effects of three gamma-ray doses (27, 55, and 108 MGy) and four neutron fluence levels (1.22, 2.19, 6.99, and 14.30 × 1019 n/cm2, E ≥ 0.01 MeV) were investigated. Quartz and albite were found to be the major rock-forming minerals, with microcline intermediates, chlorite, and muscovite as the minors. Gamma rays caused no significant changes to the physical properties of the sandstone aggregates, even at high doses (108 MGy). In contrast, neutron irradiation caused alterations that became more pronounced at higher neutron fluences. The solid was confirmed to expand through metamictization of the rock-forming minerals. Quartz and muscovite were the most affected phases, whereas albite and microcline intermediates were only slightly affected, and chlorite was almost unaffected. The decrease in density was measured by He and water pycnometry, and this value was almost reproduced by calculations using the rock-forming mineral composition of the pristine sample measured using X-ray powder diffraction/Rietveld analysis and the cell volume change of the major forming minerals. In addition, light optical microscopy and scanning electron microscopy images confirmed the presence of intergranular and intragranular cracks. Intergranular cracks appeared to have initiated from the quartz grains, which expanded significantly. The intragranular cracks were frequently observed in the albite and microcline intermediates. These cracks can be described as radial cracks starting from the expanding quartz, caused by enforced displacement for deformation consistency with quartz expansion. The crack area ratio quantified by SEM image analysis corresponds to the discrepancy of the volume expansion difference calculated by He or water pycnometry and dimensional change measurements. An evaluation of solid expansion and crack openings in aggregates is important to estimate concrete degradation.
Read full abstract