Abstract

A double-pass interferometer was developed for measuring dimensional changes of materials in a nanoscale absolute interferometric dilatometer. This interferometer realized the double-ended measurement of a sample using a single-detection double-pass interference system. The nearly balanced design, in which the measurement beam and the reference beam have equal optical path lengths except for the path difference caused by the sample itself, makes this interferometer have high stability, which is verified by the measurement of a quasi-zero-length sample. The preliminary experiments and uncertainty analysis show that this interferometer should be able to measure dimensional changes with characteristic uncertainty at the nanometer level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.