Among biomaterials, pH-responsive nanoparticles have promising potential for overcoming nonspecific therapeutic delivery by taking advantage of the pH gradient between physiological and pathological states. This article discusses pH-dependent conformations of an organic nanoparticle that has a needle-shaped body from crystalline cellulose, sandwiched between two amorphous regions from chemically nanoengineered dicarboxylated cellulose (DCC). Computational study on a single free DCC chain elucidated that in a salt-free dilute solution, the chain undergoes a major transformation between pH ∼ 3 and ∼6.3. Through this transformation, the DCC chain nature varies from globular neutral polymer to coiled quasi-neutral polymer and finally to rodlike polyelectrolyte. Study on the particle nanostructure indicated that, at pH ∼ 3, the conformation of the amorphous regions is analogous to that of polymer brushes in poor solvents, whereas at pH ∼ 5, the conformation changes to that of quasi-neutral polymer brushes in good solvents. For pH > 6.3, the conformation transforms into that of star-like polyelectrolytes. The height of the amorphous region exhibits a regressive trend up to pH ∼ 6.3, followed by a progressive trend up to pH ∼ 10. Study on the hydrodynamic properties revealed a sharp decline in the diffusion rate as the pH varies from ∼3 to ∼5, followed by a plateau for higher pH. It was demonstrated that, at pH ∼ 3, the nanoparticle may form a coherent nanophase with a rodlike structure. These results may provide insight into designing pH-responsive nanocelluloses with a controlled expansion and diffusion coefficient.
Read full abstract