Motivated by the outstanding short time stability and reliable continuous operation properties of microwave clock masers, intense worldwide efforts target the first implementation of their optical analogues based on narrow optical clock transitions and using laser cooled dilute atomic gases. While as a central line of research large efforts are devoted to create a suitably dense continuous ultracold and optically inverted atom beam source, recent theoretical predictions hint at an alternative implementation using a filtered thermal beam at much higher density. Corresponding numerical studies give encouraging results but the required very high densities are sensitive to beam collimation errors and inhomogeneous shifts. Here we present extensive numerical studies of threshold conditions and the predicted output power of such a superradiant laser involving realistic particle numbers and velocities along the cavity axis. Detailed studies target the threshold scaling as a function of temperature as well as the influence of eliminating the hottest part of the atomic distribution via velocity filtering and the benefits of additional atomic beam guiding. Using a cumulant expansion approach allows us to quantify the significance of atom-atom and atom-field correlations in such configurations. We predict necessary conditions to achieve a certain threshold photon number depending on the atomic temperature and density. In particular, we show that the temperature threshold can be significantly increased by using more atoms. Interestingly, a velocity filter removing very fast atoms has only almost negligible influence despite their phase perturbing properties. On the positive side an additional conservative optical guiding towards cavity mode antinodes leads to significantly lower threshold and higher average photon number. Interestingly we see that higher order atom-field and direct atom-atom quantum correlations play only a minor role in the laser dynamics, which is a bit surprising in the superradiant regime.