Abstract

Cold Molecules A dilute atomic gas cooled down to very cold temperatures can enter the so-called quantum degenerate regime, where quantum properties of the gas come to the fore. This regime has been achieved for both bosonic and fermionic atoms, but molecules, with their many internal states, present a special challenge. De Marco et al. cooled a bulk gas of fermionic potassium-rubidium molecules to quantum degeneracy (see the Perspective by Zelevinsky). The authors first cooled atomic potassium and rubidium gases separately, then bound them together into potassium-rubidium molecules, and finally brought the molecules down to their ground state. The density profile of the molecular gas revealed the system's quantum nature, which in turn kept the gas stable by suppressing chemical reactions. Science , this issue p. [853][1]; see also p. [820][2] [1]: /lookup/doi/10.1126/science.aau7230 [2]: /lookup/doi/10.1126/science.aav9149

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.