Investigating on Pólya groups [P. J. Cahen and J. L. Chabert Integer-Valued Polynomials, Mathematical Surveys and Monographs, Vol. 48 (American Mathematical Society, Providence, 1997)] in non-Galois number fields, Chabert [J. L. Chabert and E. Halberstadt, From Pólya fields to Pólya groups (II): Non-Galois number fields, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.06.008 ] introduced the notion of pre-Pólya group [Formula: see text], which is a generalization of the pre-Pólya condition, duo to Zantema [H. Zantema, Integer valued polynomials over a number field, Manuscripta Math. 40 (1982) 155–203]. In this paper, using class field theory, we describe the pre-Pólya group of a [Formula: see text]-field [Formula: see text], for [Formula: see text] an even integer, where [Formula: see text] denotes the dihedral group of order [Formula: see text]. Moreover, for special case [Formula: see text], we improve the Zantema’s upper bound on the maximum ramification in Pólya [Formula: see text]-fields.
Read full abstract