Abstract

Let F/k be a Galois extension of number fields with dihedral Galois group of order 2q, where q is an odd integer. We express a certain quotient of S-class numbers of intermediate fields, arising from Brauer–Kuroda relations, as a unit index. Our formula is valid for arbitrary extensions with Galois group D2q and for arbitrary Galois-stable sets of primes S, containing the Archimedean ones. Our results have curious applications to determining the Galois module structure of the units modulo the roots of unity of a D2q-extension from class numbers and S-class numbers. The techniques we use are mainly representation theoretic and we consider the representation theoretic results we obtain to be of independent interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.