This research presents a novel TDLAS gas concentration detection method based on digital modulation. The method inherits the advantage of a simple system structure from Direct Absorption Spectroscopy, as well as the excellent sensitivity of Wavelength Modulation Spectroscopy. A low-frequency sawtooth wave is employed to drive the laser, resulting in a digital direct absorption spectrum signal. By constructing a cosine modulation sequence in the time domain and performing linear interpolation on the direct absorption spectrum, it successfully converts to a wavelength-modulated absorption spectrum and simultaneously generates a digital reference signal at double the frequency. Ultimately, phase-locked amplification technology can be used to calculate the amplitude of the second harmonic. Since both the modulation and reference signals are generated digitally, they ensure a strict frequency-doubling relationship and phase correlation, which not only reduces the complexity of the hardware system but also effectively minimizes system errors. Because digital technology generates both the modulation and reference signals, it ensures that they have the same phase and a strict frequency-doubling relationship. Experimental results demonstrate that, when fitted by a cubic polynomial, the second harmonic amplitude and the gas concentration have a correlation coefficient (R2) as high as 0.99999 and a root mean square error as low as 0.0011. This proves the method's great accuracy and reliability in practical applications.
Read full abstract