Recently, the need for high speed multiply-accumulate (MAC) operations is crucial in numerous systems like 5G, deep learning, in addition to many digital signal processing (DSP) applications. This work offers an improved MAC (I-MAC) block of different bit-size based on Vedic Mathematic and employing a hybrid adder consists of an enhanced Brent-Kung with a carry-select adder (HBK-CSLA) to achieve the sum of products for the MAC. The work is then, developed to design a new multimode fixed-point (FX-Pt) MAC block by exploiting the proposed design of the I-MAC architecture. The proposed multimode MAC block supports three modes of operation; single 64-bit MAC operation, dual 32-bit multiplication with 32-bit single addition, and single 32-bit MAC operation. The design has utilized an adjusted architecture for the Vedic-multiplier (Adjusted-VM), a 64-bit HBK-CSLA, and a control circuit to select the desired mode of operation. The performance of the multi-mode MAC is then optimized by exploiting pipelining concept. The proposed architectures are synthesized in various FPGA families utilizing VHDL language in Xilinx ISE14.7 tool. The performance results have exposed that the proposed 64-bit I-MAC block have attained observable lessen 9.767% in delay and area usage of 47.49% compared with the most existing MAC block designs.
Read full abstract