This article, written by JPT Technology Editor Judy Feder, contains highlights of paper SPE 203251, “Drilling in the Digital Age: Harnessing Intelligent Automation To Deliver Superior Well-Construction Performance in a Major Middle Eastern Gas Field,” by Brennan Goodkey, Gerardo Hernandez, and Andres Nunez, Schlumberger, et al., prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually from 9-12 November. The paper has not been peer reviewed. While breakthroughs in digital technology have rewarded many industries with a step change in productivity and efficiency during the past decade, the drilling industry has yet to benefit on a large scale from these advances. The complete paper details the introduction of a drilling automation system (DAS) to deliver superior well-construction performance in a major gas field in the Middle East. The DAS was deployed on two onshore gas drilling rigs. The paper discusses the technology itself, the deployment process, implementation challenges, the agile development model, and the results achieved. Introduction In 2018, Schlumberger partnered with a major Middle Eastern national oil company on one of the world’s largest lump-sum, turnkey gas-well-delivery projects, where drilling operations had already been optimized by targeting high-impact, low-effort areas of opportunity. Drilling automation was pursued to achieve an improvement in performance, specifically to shift the technical limit and to minimize the frequency of service incidents that could cost days of nonproductive time (NPT). An in-house solution under development for some time was designed to take control of the rig’s surface equipment to automate and optimize most drilling tasks and to generate value in the following areas: Automation of drilling actions to perform exactly as planned, within the safe limits of operation, by eliminating the inconsistency of manual operation and its susceptibility to human factors Identification and mitigation of drilling dysfunctions that could lead to costly tool failures and incidents by using intelligence engines that would adapt drilling parameters continuously for best performance Technology Overview The DAS was developed as the execution component of a well-construction platform designed to link planning and execution. The planning component allowed for all well-design stakeholders to collaborate online and create the well plan simultaneously. Once prepared, the plan would be exported to the rig as a machine-interpretable digital drilling plan that the DAS could digest. With the validation of rig personnel, the DAS would then take control of a selection of drilling actions and execute exactly as instructed in the well plan. While drilling, extensive information would be collected to serve as a vehicle to drive performance when planning future wells. In the deployment summarized in the complete paper, a pilot version of the drilling automation module was deployed as a standalone product. The key objectives of design included three categories - dynamic planning, safety and resilience, and interoperability.
Read full abstract