In digital filters theory, filtering techniques generally deal with pole-zero structures. In this context, filtering schemes, such as infinite impulse response (IIR) filters, are described by linear differential equations or linear transformations, in which the impulse response of each filter provides its complete characterization, under filter design specifications. On the other hand, finite impulse response (FIR) digital filters are more flexible than the analog ones, yielding higher quality factors. Since many approaches to the circuit synthesis using the wavelet transform have been recently proposed, here we present a digital filter design algorithm, based on signal wavelet decomposition, which explores the energy partitioning among frequency sub-bands. Exploring such motivation, the method involves the design of a perfect reconstruction wavelet filter bank, of a suitable choice of roots in the Z-plane, through a spectral factorization, exploring the orthogonality and localization property of the wavelet functions. This approach resulted in an energy partitioning across scales of the wavelet transform that enabled a superior filtering performance, in terms of its behavior on the pass and stop bands. This algorithm presented superior results when compared to windowed FIR digital filter design, in terms of the intended behavior in its transition band. Simulations of the filter impulse response for the proposed method are presented, displaying the good behavior of the method with respect to the transition bandwidth of the involved filters.
Read full abstract