This study examines the kinetics of thermal diffusion of silver in Ag-GeSe2 and Ag- As10Ge30S60 thin film structures during prolonged storage in the dark at room temperature, as well as the effects of plasmon-enhanced photostimulated diffusion of silver into As10Ge30S60 films. Ag diffraction gratings with a period of 519 nm were used to excite surface plasmon-polaritons (SPP) at the silver-chalcogenide glass interface. It was found that the thermal diffusion coefficient of silver into GeSe2 is significantly higher than into As10Ge30S60. For Ag– As10Ge30S60, photostimulated silver diffusion coefficients were measured with and without SPP excitation. SPP excitation triples the photostimulated Ag flux into As10Ge30S60. Although photosensitivity decreases over time, the plasmon-stimulated increase in Ag flux remains stable. Additionally, As10Ge30S60 thermally doped with silver shows much higher optical absorption at the probing wavelength compared to the photodoped layer with the same silver concentration. Possible mechanisms of these layers formation are discussed.
Read full abstract