While Mg–Mg2Ni composites are promising for hydrogen storage, their implementation is hindered by our incomplete understanding of absorption/desorption kinetics. Here, we combine in situ neutron diffraction with kinetic and microstructural analyses to uncover the sorption mechanism of deuterated hydrogen D2 in a Mg–Mg2Ni composite processed by fast forging. Phase transitions upon first absorption are found to be different from subsequent absorptions. The first absorption involves rapid formation of Mg2NiD0.3-x followed by simultaneous formation of MgD2 and Mg2NiD4. Kinetic modeling indicates that surface nucleation of the magnesium hydride is rate-limiting. Subsequent absorptions involve two phases, Mg and Mg2NiD0.3-x, which promote absorption. Kinetic modeling and microstructure analysis indicate that (1) MgD2 nucleation occurs at the Mg–Mg2NiD0.3-x interface and (2) Mg2NiD4 formation is kinetically controlled by deuterium diffusion through the growing Mg2NiD4 plate. In all desorptions, deuterium release starts by rapid decomposition of Mg2NiD4 into Mg2NiD0.3-x, followed by slower MgD2 decomposition.
Read full abstract