Reducing dehydrogenation temperature while preserving high hydrogen generation capacity obstructs the hydrolysis of sodium borohydrides (NaBH4). The two-dimensional (2D) MAX phase of titanium aluminum carbide (Ti3AlC2) and MXene (Ti3C2Tx) multilayers was investigated for hydrogen generation via NaBH4 hydrolysis with and without light. The material was characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS). The activity of Ti3AlC2 was significantly enhanced by the integration of UV light radiation during hydrolysis. Ti3AlC2/Ti3C2Tx improved the dehydrogenation rates of NaBH4 at ambient conditions and maintained high hydrogen generation rates (HGRs) over time compared to a conventional method. It exhibited a HGR of 200–300 mL·min−1·g−1. Photo-assisted hydrolysis over the catalyst can be maintained for several times at ambient temperature. The catalyst demonstrated effective performance even after five cycles of usage.
Read full abstract