Precision agriculture relies on highly detailed soil maps to optimize resource use. Proximal sensing methods, such as EMI, require a certain number of soil samples and laboratory analysis to interpolate the characteristics of the soil. NIR diffuse reflectance spectroscopy offers a rapid, low-cost alternative that increases datapoints and map accuracy. This study tests and optimizes a methodology for high-detail soil mapping in a 2.5 ha hazelnut grove in Grosseto, Southern Tuscany, Italy, using both EMI sensors (GF Mini Explorer, Brno, Czech Republic) and a handheld NIR spectrometer (Neospectra Scanner, Si-Ware Systems, Menlo Park, CA, USA). In addition to two profiles selected by clustering, another 35 topsoil augerings (0–30 cm) were added. Laboratory analyses were performed on only five samples (two profiles + three samples from the augerings). Partial least square regression (PLSR) with a national spectral library, augmented by the five local samples, predicted clay, sand, organic carbon (SOC), total nitrogen (TN), and cation exchange capacity (CEC). The 37 predicted datapoints were used for spatial interpolation, using the ECa map, elevation, and DEM derivatives as covariates. Kriging with external drift (KED) was used to spatialize the results. The errors of the predictive maps were calculated using five additional validation points analyzed by conventional methods. The validation showed good accuracy of the predictive maps, particularly for SOC and TN.
Read full abstract