A formulation for the toner deposition time constant <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> was derived and the effect of each of the variables appearing in it or the toner deposition equation was studied by computer simulation. The simulations were performed using toners containing 10 and 20 particle sizes over a range of size frequency distributions. It was found that the effect of each variable was quite dependent upon the values of the other variables. The variables were: depletion-rate constant <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">K</tex> time <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</tex> , capacitance <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</tex> , electrode spacing <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</tex> , toner particle concentration <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</tex> , particle diameter <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">PD</tex> , charge per particle <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CP</tex> , and three choices of thickness of the diffuse double layer: <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">WC</tex> --very diffuse-coupled with the charge per particle varying with the diameter of the particle, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">WB</tex> --normal-coupled with the charge per particle varying with the surface area of the particle, and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">WA</tex> -- tightly bound-coupled with the charge per particle varying with the volume of the particle. When the variables were such that the maximum in the distribution function for the deposited toner particles was at the lower end of the particle size range, increase in the depletion-rate constant shifted the maximum toward the upper end of the particle size range when the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">KT</tex> product became greater than 0.1 and decreased the rate of deposition. However, when the variables were such that the maximum in the distribution function for the deposited toner particles was at the upper end of the particle size range, increase in <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">K</tex> merely decreased the rate of deposition without affecting particle size distribution. In general, large values of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">K</tex> , small values of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</tex> , short time periods, large values of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</tex> , and large values of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</tex> tended to push the distribution of the deposited toner toward the upper end of the particle size range. Large values of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</tex> , large values of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</tex> (restricted to <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">KT < 1</tex> ), and small values of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</tex> , <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</tex> , and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">K</tex> tended to push the distribution maximum toward the lower end of the particle size range. The variables <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">K</tex> , <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</tex> , and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">PD</tex> strongly affected the magnitude of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> while <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</tex> did not affect the magnitude of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> unless <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">KT</tex> >0.1. For a given particle size range, the ratio of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> for the smallest particle to <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> for the largest particle was invariant with respect to the magnitude of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> . The range of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> for a given particle size range was much less for the very diffuse layer (charge was a linear function of the diameter) than for the normal layer (charge was a linear function of the surface area) and even less than for the tightly bound layer (charge was a linear function of the volume). Change in particle size range affected the ratio of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> for the smallest to largest particle in the range. Size frequency distributions with a maximum at some particle size or sizes tended to control the distribution of deposited particles at short deposition times ( <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t<1 \micro s</tex> ), but could not control the distribution of deposited particles at long deposition times ( <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t > 1</tex> ms). The choice of diffuse double layer and coupled charge dependency had very large effects on the magnitude of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> and the effect of some of the variables on <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> . The input-output tests showed that for a density range of 0 to 1.5, the response of the photoconductor in the present model was unsatisfactory and that a better simulation of latent image formation is required.