This article extends the quantitative method of optimizing the opening velocities for a vacuum circuit breaker (VCB) with cup-type axial magnetic field (AMF) contacts. The material of the AMF contact is Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">50</sub> Cr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">50</sub> . We define v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> as the initial opening velocity over half the full contact gap and v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> as the average velocity over the full contact gap of 20 mm. We optimize v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> and v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> using the transition of anode-discharging modes, of which we combine the footpoint mode and anode spot mode into a large-gap high-current (LGHC) mode. The experiment shows that v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> should be higher than a threshold velocity v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1_th</sub> , which corresponds to a peak critical contact gap d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1_th</sub> for the transitions of an intense arc mode into a diffuse arc mode, in high-current interruption. The higher v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> is than v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1_th</sub> , the faster the intense arc mode evolves into the diffuse arc mode. This helps successfully interrupt the short-circuit current in a short arcing time. Another threshold velocity, v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2_th</sub> , corresponds to the maximum critical contact d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">II_th</sub> for the formation of an LGHC mode in the second arc current half-wave. A high v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> design needs v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> to be lower than v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2_th</sub> . The lower v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> is than v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2_th</sub> , the better the VCB avoids the LGHC mode in high-current interruption. This helps interruption over a long arcing time. We propose an intelligent opening and breaking operation for VCBs with cup-type AMF contacts, whereby the VCB opens with different opening velocities according to the short-circuit current level.
Read full abstract