We report a pulsed, fiber-amplified microchip laser providing widely tunable repetition rate (7.1 - 27 kHz) with constant pulse duration (1.0 ns), pulse energy up to 0.41 mJ, linear output polarization, diffraction-limited beam quality (M(2) < 1.2), and < 1% pulse-energy fluctuations. The pulse duration was shown to minimize nonlinear effects that cause temporal and spectral distortion of the amplified pulses. This source employs passive Q-switching, single-stage single-pass amplification, and cw pumping, thus offering high efficiency, simplicity, and compact, rugged packaging for use in practical applications. The high peak power and high beam quality make this system an ideal pump source for nonlinear frequency conversion, and we demonstrated efficient harmonic generation and optical parametric generation of wavelengths from 213 nm to 4.4 mum with Watt-level output powers.
Read full abstract