Abstract

We report a pulsed, fiber-amplified microchip laser providing widely tunable repetition rate (7.1 - 27 kHz) with constant pulse duration (1.0 ns), pulse energy up to 0.41 mJ, linear output polarization, diffraction-limited beam quality (M(2) < 1.2), and < 1% pulse-energy fluctuations. The pulse duration was shown to minimize nonlinear effects that cause temporal and spectral distortion of the amplified pulses. This source employs passive Q-switching, single-stage single-pass amplification, and cw pumping, thus offering high efficiency, simplicity, and compact, rugged packaging for use in practical applications. The high peak power and high beam quality make this system an ideal pump source for nonlinear frequency conversion, and we demonstrated efficient harmonic generation and optical parametric generation of wavelengths from 213 nm to 4.4 mum with Watt-level output powers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.