Quantitative X-ray diffraction approaches require careful correction for sample transmission. Though this is a routine task at state-of-the-art small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS) or diffraction beamlines at synchrotron facilities, the transmission signal cannot be recorded concurrently with SAXS/WAXS when using the small, sub-millimetre beamstops at many X-ray nanoprobes during SAXS/WAXS experiments due to the divergence-limited size of the beamstop and the generally tight geometry. This is detrimental to the data quality and often the only solution is to re-scan the sample with a PIN photodiode as a detector to obtain transmission values. In this manuscript, we present a simple yet effective solution to this problem in the form of a small beamstop with an inlaid metal target for optimal fluorescence yield. This fluorescence can be detected with a high-sensitivity avalanche photodiode and provides a linear counter to determine the sample transmission.
Read full abstract