Abstract
Over the next decade, the extremely brilliant fourth generation synchrotron radiation sources are set to become a key driving force in materials characterization and technology development. In this study, we present a conceptual design of a versatile "Materia" diffraction and imaging beamline for a low-emittance synchrotron radiation facility. The beamline was optimized for operation with three main principal delivery regimes: parallel collimated beam ∼1mm beam size, micro-focus regime with ∼10μm beam spot size on the sample, and nano-focus regime with <100nm focus. All regimes will operate in the photon energy range of 10-30keV with the key feature of the beamline being fast switching between them, as well as between the various realizations of diffraction and imaging operation modes while maintaining the target beam position at the sample, and with both spectrally narrow and spectrally broad beams up to the energy band ΔE/E of 5 × 10-2. The manuscript presents the details of the principal characteristics selected for the insertion device and beamline optics, the materials characterization techniques, including the simulations of thermal load impact on the critical beamline optics components. Significant efforts were made to design the monochromators to mitigate the very high beam power load produced by a superconducting undulator source. The manuscript will be of interest to research groups involved in the design of new synchrotron beamlines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.