BackgroundOxidative stress is a significant feature in the pathomechanism of neurodegenerative diseases. Thus, the search for an effective and safe novel antioxidant agent with neuroprotective properties has increased the interest in medicinal plant products as a bioactive phytochemical source. However, little is known about the potential effects of the medically important Glaucium corniculatum as a natural antioxidant. ObjectiveIn the present study, it was aimed to investigate the anti-oxidative, anti-apoptotic, and cell cycle regulatory mechanisms underlying the neuroprotective effects of alkaloid extracts (chloroform, methanol, and water) from G. corniculatum, which was profiled for major alkaloid/alkaloids, against H2O2-induced neuronal damage in differentiated PC12 cells. Materials and methodsThe profiles of the alkaloid extracts were analyzed by GC-MS. The effects of the alkaloid extracts on intracellular ROS production, level of apoptotic cells, and cell cycle dysregulation were analyzed by flow cytometry; the effects on mRNA expression of apoptosis-related genes were also analyzed by qRT-PCR. ResultsThe same alkaloid components, allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide were obtained in all three solvents, but the ratios of the components differed according to the solvents. Allocryptopine was determined to be the major alkaloid ingredient in the alkaloid extracts, with the highest amount of allocryptopine (497 μg/mg) being found in the chloroform alkaloid extract (CAE) (*p < 0.05). The best results were obtained from CAE, which has the highest amount of allocryptopine among alkaloid extracts in all studies. CAE suppressed intracellular ROS production (5.7-fold), percentage of apoptotic cells (3.0-fold), and cells in the sub G1 phase (6.8-fold); additionally, it increased cells in the G1 phase (1.5-fold) (**p < 0.01). CAE remarkably reduced the expressions of Bax, Caspase-9/-3 mRNA (2.4–3.5-fold) while increasing the expression of Bcl-2 mRNA (3.0-fold) (*p < 0.05). ConclusionsOur results demonstrated that alkaloid extracts from G. corniculatum, which contain allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide suppressed oxidative stress-induced neuronal apoptosis, possibly by suppressing the mitochondrial apoptotic pathway and regulating the cell cycle. These results are the first report that related alkaloids have played a neuroprotective role by regulating multiple mechanisms. Thus, our study indicated that these alkaloids especially allocryptopine could offer an efficient and novel strategy to explore novel drugs for neuroprotection and cognitive improvement.
Read full abstract