BackgroundWe wanted to investigate whether parasympathetic inhibition affected the expression of type 2 innate lymphoid cells (ILC2s) in the nasal mucosa of a mouse model of allergic rhinitis (AR). MethodsThirty male C57BL/6 mice were randomly divided into 3 groups: control group, AR group, AR-treated group. AR nasal symptoms were assessed on a semi-quantitative scale according to the frequencies of nose rubbing and sneezing and the degree of rhinorrhea. The expression of cytokines protein in serum was detected by enzyme linked immunosorbent assay (ELISA). The number of ILC2s in nasal mucosa was detected by immunofluorescence double staining assay. Quantitative real-time Polymerase Chain Reaction (qPCR) was used to detect the expression of ILC2-associated factor in nasal mucosa. ResultsThe symptom scores of the AR group were significantly higher than those of the control group and AR-treated group. The expression levels of mouse ovalbumin (OVA) specific IgE, IL4, IL5, and IL13 in the serum of AR group were significantly higher than those in the control group and AR-treated group. The number of ILC2s and the gene expression of ILC2s related factors GATA3, CD25 and CD90 (Thy1) in the nasal mucosa of the AR group were significantly higher than those of the control group and AR-treated group. ConclusionsWe found that parasympathetic inhibition relieved AR symptoms and inhibited immune response of AR mice. ILC2s play an important role in the occurrence and development of AR, and parasympathetic nerve inhibition reduced the number of ILC2s and inhibited the cytokines expression by ILC2s. Our data provide information on the mechanism of action of parasympathetic inhibition in AR.