Historically, the enterochromaffin cell was the first endocrine cell type detected in avian gut; subsequently, a number of types of such cells were distinguished on the basis of the ultrastructural features of the secretory granules. More recently, immunocytochemical procedures have revealed somatostatin-, pancreatic polypeptide (PP)-, polypeptide YY-, glucagon-, secretin-, vasoactive intestinal peptide (VIP)-, gastrin-, cholecystokinin-, neurotensin-, bombesin-, substance P-, enkephalin-, motilin-, and FMRFamide-like immunoreactivity in avian gastrointestinal endocrine cells. Most endocrine cells are located in the antrum; there are a number in the proventriculus and small intestine but few in the gizzard, cecum, and rectum. Several avian gastroenteropancreatic hormones, including glucagon, VIP, secretin, bombesin, neurotensin, and PP, have been isolated and sequenced. They resemble the equivalent mammalian peptides in terms of molecular size but differ in amino acid composition and sequence; some (e.g., VIP) differ only in minor respects, others (e.g., secretin) more radically. Gastrointestinal endocrine cells appear late in development; available data indicate that few types are recognized by either immunocytochemistry or electron microscopy before 16 days of incubation. Experimental evidence has shown that at least the majority of gut endocrine cells are of endodermal origin and are not derived from the neural crest or neuroectoderm as earlier proposed. In early embryos, the progenitors of gastrointestinal endocrine cells are more widespread than are the differentiated cells in chicks at hatching. This, along with other observations, raises the question of factors that might influence the differentiation of gut endocrine cells.