Kidney organoids - 3D representations of kidneys made either from pluripotent or tissue stem cells - have been available for well over a decade. Their application could confer notable benefits over longstanding in vivo approaches with the potential for clinically aligned human cells and reduced ethical burdens. They been used, at a proof-of-concept level, in development in disease modeling (including with patient-derived stem cells), and in screening drugs for efficacy/toxicity. They differ from real kidneys: they represent only foetal-stage tissue, in their simplest forms they lack organ-scale anatomical organization, they lack a properly arranged vascular system, and include non-renal cells. Cell specificity may be improved by better techniques for differentiation and/or sorting. Sequential assembly techniques that mimic the sequence of natural development, and localized sources of differentiation-inducing signals, improve organ-scale anatomy. Organotypic vascularization remains a challenge: capillaries are easy, but the large vessels that should serve them are absent from organoids and, even in cultured real kidneys, these large vessels do not survive without blood flow. Transplantation of organoids into hosts results in their being vascularized (though probably not organotypically) and in some renal function. It will be important to transplant more advanced organoids, with a urine exit, in the near future to assess function more stringently. Transplantation of human foetal kidneys, followed by nephrectomy of host kidneys, keeps rats alive for many weeks, raising hope that, if organoids can be produced even to the limited size and complexity of foetal kidneys, they may one day be useful in renal replacement.