Cirrhotic cardiomyopathy (CCM) is a common complication of liver cirrhosis. Many patients with cirrhotic livers do not die from liver failure but from abnormal hemodynamics secondary to liver cirrhosis. Liver transplantation is one of the most effective treatments for liver diseases. Recent studies have found that liver transplantation can reverse CCM and improve cardiac function; however, its role and remedial mechanism remain unclear. Circular RNAs (circRNAs) have become an important marker for diagnosing diseases. The differential expression of circRNAs is associated with heart diseases. In this study, we used gene sequencing to detect the circRNA expression profile of patients with CCM before and after liver transplantation and predicted the differential circRNA target genes. The results showed that a total of 1495 circRNAs were dysregulated after liver transplantation, 1319 genes were downregulated, and 176 were upregulated (P<0.05, log2 (fold change)>2.0). The qRT-PCR results showed that circ-ASAP1, circ-N4BP2L2, circ-EXOC6B were significantly downregulated (P<0.05), which were consistent with the RNA sequencing data, and circ-ASAP1 had the most significant difference. Bioinformatics analysis suggested that mTOR and MAPK signaling pathways might be involved in the pathogenesis of CCM. By constructing a circRNA-miRNA-mRNA interaction network, hsa-miR-197-3p, hsa-miR-483-3p, and hsa-miR-885-3p, particularly key miRNA (hsa-miR-483-3p), were found to be the major potential genes involved in CCM regulation. In summary, this study suggested that circRNAs play a crucial regulatory role in the occurrence of CCM before and after liver transplantation, and their potential biological function might be the key to diagnosis and treatment.
Read full abstract