Mongolian sheep are a breed of sheep in China known for their excellent cold and drought resistance. Sperm from Mongolian sheep are often cryopreserved to improve breeding outcomes. However, cryopreservation of sperm often results in issues such as reduced vitality and altered morphology. Therefore, the objective of this study was to investigate the impact of the cryoprotectant resveratrol on frozen sperm from Mongolian sheep, specifically examining its effects on key proteins during cryopreservation. In this study, sperm samples were obtained from three adult Mongolian rams and processed through semen centrifugation. The sperm motility parameters of Fresh Sperm Group (FR), Resveratrol added before freezing group (FF-Res), Resveratrol-free frozen sperm group (FT), and Resveratrol added after freeze-thawing group (FA-Res) were determined. The tandem mass tags (TMT) peptide labeling combined with LC-MS/MS was used for proteomic analysis of the total proteins in FR and FT groups. A total of 2651 proteins were identified, among which 41 proteins were upregulated and 48 proteins were downregulated after freezing. In-depth bioinformatics analysis of differentially abundant proteins (DAPs) revealed their close association with the tricarboxylic acid cycle (TCA) and oxidative phosphorylation pathway. The energy-related protein dihydrolipoamide dehydrogenase (DLD) and the reactive oxygen species (ROS)-related protein NADH dehydrogenase 1 beta subcomplex subunit 9 (NDUFB9) exhibited significant decreases, indicating their potential role as key proteins contributing to reduced sperm vitality. The study demonstrated that the addition of resveratrol (RES) to semen could elevate the expression levels of DLD and NDUFB9 proteins. This study represents the pioneering proteomic analysis of Mongolian ram sperm before and after cryopreservation, establishing the significance of DLD and NDUFB9 as key proteins influencing the decline in vitality following cryopreservation of Mongolian ram sperm. These findings clarify that resveratrol can enhance the levels of DLD and NDUFB9 proteins in cryopreserved Mongolian ram sperm, consequently enhancing their vitality.