The ARF gene family plays a vital role in regulating multiple aspects of plant growth and development. However, detailed research on the role of the ARF family in regulating flower development in petunia and other plants remains limited. This study investigates the distinct roles of PhARF5 and PhARF19a in Petunia hybrida flower development. Phylogenetic analysis identified 29 PhARFs, which were grouped into four clades. VIGS-mediated silencing of PhARF5 and PhARF19a led to notable phenotypic changes, highlighting their non-redundant functions. PhARF5 silencing resulted in reduced petal number and limb abnormalities, while PhARF19a silencing disrupted corolla tube formation and orientation. Both genes showed high expression in the roots, leaves, and corollas, with nuclear localization. The transcriptomic analysis revealed significant overlaps in DEGs between PhARF5 and PhARF19a silencing, indicating shared pathways in hormone metabolism, signal transduction, and stress responses. Phytohormone analysis confirmed their broad impact on phytohormone biosynthesis, suggesting involvement in complex feedback mechanisms. Silencing PhARF5 and PhARF19a led to differential transcription of numerous genes related to hormone signaling pathways beyond auxin signaling, indicating their direct or indirect crosstalk with other phytohormones. However, significant differences in the regulation of these signaling pathways were observed between PhARF5 and PhARF19a. These findings reveal the roles of ARF genes in regulating petunia flower development, as well as the phylogenetic distribution of the PhARFs involved in this process. This study provides a valuable reference for molecular breeding aimed at improving floral traits in the petunia genus and related species.
Read full abstract