The emergence of distributed generation from renewable energy sources has led to the adoption microgrids as an alternative energy solution. However, implementing microgrids presents challenges, particularly in coordinating relay protection, due to factors like distributed generation sources, bidirectional power flow, variable short-circuit levels, and changes in network behavior. Although overcurrent relays (OCR) are frequently utilized in microgrid protection, a more adaptable strategy is needed as grid architectures transition from radial to non-radial. This paper proposes a new method to optimize the coordination of OCRs in microgrids by adjusting parameters like time multiplier settings (TMS), plug settings (PS), and characteristic curve selection. The study utilizes meta-heuristic techniques such as the harmony search algorithm (HSA) and the non-dominated sorting genetic algorithm-II (NSAGA-II) for optimal coordination. Simulations on a microgrid and bus test system demonstrate the effectiveness of the proposed approach in enhancing protection indicators like sensitivity, speed, selectivity, and reliability in microgrid operations. The results also indicate that the computation time of HSA is less than NSGA-II, but with an increase in DGs capacity, there is a continuous tendency to reduce the relay operation time.
Read full abstract