The phase complex of a three-component system of sodium chlorides, bromides and tungstates was studied for the first time using experimental and theoretical methods. It was found that the liquidus surface of the system consists of the crystallization fields of NaBr, Na2WO4, Na3ClWO4 compounds and NaClxBr1–x solid solutions. The differential thermal method of physico-chemical analysis (DTA) revealed the compositions and melting points of eutectic in the quasi–binary and three–component systems NaBr–Na3ClWO4 and NaCl–NaBr–Na2WO4, respectively. To establish the nature of the physico-chemical interaction in the system, three compositions were studied in the secondary triangle NaCl–NaBr–Na3ClWO4 by the DTA method, thermal effects of tertiary crystallization were not recorded on the DTA curves of these compositions, which is proof of the absence of a non-invariant composition in the NaCl–NaBr–Na3ClWO4 simplex. To determine the composition and melting point of the nonvariant composition located in the NaBr–Na2WO4–Na3ClWO4 simplex, a polythermal section located in the field of crystallization of sodium bromide and a nonvariant section emerging from the crystallization pole of sodium bromide passing through the point of joint crystallization of sodium chloride and the compound, with a constant decrease in the content of sodium bromide in the studied compositions before the onset of non-invariant crystallization process. The composition of the three-component eutectic of ED in molar percentages, crystallizing at 560оC with the following component content, has been determined: 7.5% NaCl; 38.5% NaBr; 54% Na2WO4. Based on data on the melting temperatures of the initial salts, compositions and crystallization temperatures of two- and three-component systems, a 3D-model of the “composition–temperature” phase complex in the temperature range 500–700оC was formed using theoretical methods. On the basis of the model, the isotherms of the liquidus surface and the T–x diagram of the polythermal section for which experimental studies were conducted was constructed. Also, as an example of using a 3D-model, the composition of the equilibrium phases released during cooling of an arbitrarily selected figurative point in the temperature range from 700 to 500оC. was calculated.
Read full abstract