Abstract

In a bid to complement the lost reserves from fossils, recent advances in research are tailored towards producing hydrogen as an alternative source of fuel which is aimed at fostering a globally sustainable and reliable energy-economy. In this work, hydrogen was produced from formic acid (FA) using a new technology that involves the use of copper nanoparticles (CuNPs) supported on triethanolamine. The CuNP-catalysts of variant concentrations (i.e. 0.6–1.2 M) were synthesized using the conventional chemical deposition method. Also, a novel approach that bothers on the application of the Differential Method of Analysis (DMA) was used in determining the kinetic parameters for the FA-dehydrogenation. Based on the results, the volume of H2 produced varied with time, pH, concentration and catalyst-size. At 6 h, the 1 M CuNPs gave the highest volume (815 mL) of hydrogen with corresponding pH, particle size and approximate conversion of 3.19, 1.5 nm and 100% respectively, whereas, over extended periods i.e. over 6 h, the approximate volume-conversions of FA increased insignificantly for all catalysts. According to the investigation, the optimum CuNP-catalyst concentration required to produce 815 mL H2 in 6 h is 1 M. The decomposition was a first-order-type with a rate constant (k-value) of 1.0041 s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.