Abstract

Facile hydrogen generation from formic acid (FA) is a promising way of hydrogen storage and release in the fuel-cell-based hydrogen economy; the development of efficient heterogeneous catalyst systems for ultrapure H2 generation from FA in the absence of additives remains a major challenge. Herein, we present a prefunctionalized porous organic polymer (POP) containing 2,6-bis(1,2,3-triazol-4-yl)pyridyl (BTP) units and carboxylate groups. The terdentate BTP and hydrophilic carboxylate are homogeneously incorporated into the host framework of the POP. BTP units with strong chelating ability can effectively stabilize palladium nanoparticles for heterogeneous dehydrogenation of FA, whereas carboxylate not only increases polarity and dispersibility of the catalytic system in aqueous solutions but also functions as basic sites to facilitate the O–H bond dissociation. The catalytic system shows high catalytic activity, excellent stability and superior recyclability in H2 generation from aqueous FA without any ad...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.