This paper presents the minimization of total harmonic distortion in a seven-level cascaded H-bridge multilevel inverter with resistive load using the teaching–learning-based optimization algorithm. The minimization of Total Harmonic Distortion (THD)is a challenging optimization problem due to the fact that nonlinear equations are involved. Recently, bio-inspired algorithms have become very popular approaches to solving various optimization problems in different areas of engineering. For this reason, the results obtained with the Teaching–Learning-Based Optimization (TLBO)algorithm were compared with three other popular bio-inspired algorithms, the genetic algorithm, differential evolution, and particle swarm optimization. The comparative analysis, conducted by sweeping the modulation index, made it possible to obtain graphs and data on the behavior of the four analyzed algorithms. Finally, it was concluded that the TLBO algorithm is very effective and is able to solve the THD-minimization problem. Its main advantage over the other algorithms is the fact that it does not require control parameters for its correct operation in the solution of the problem.