In contrast to the passive remote sensing of global CO2 column concentrations (XCO2), active remote sensing with a lidar enables continuous XCO2 measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atmospheric environment monitoring satellite (AEMS, also named DQ-1) aerosol and carbon dioxide detection Lidar (ACDL) is a novel spaceborne lidar that implements a 1572 nm integrated path differential absorption (IPDA) method to measure the global XCO2 for the first time. In this study, special methods have been developed for ACDL data processing and XCO2 retrieval. The CO2 measurement data products of ACDL, including the differential absorption optical depth between the online and offline wavelengths, the integral weighting function, and XCO2, are presented. The results of XCO2 measurements over the period from 1st June 2022 to 30th June 2022 (first month data of ACDL) are analyzed to demonstrate the measurement capabilities of the spaceborne ACDL system.