Troponin, one of the sarcomeric proteins, plays a central role in the Ca(2+) regulation of contraction in vertebrate skeletal and cardiac muscles. It consists of three subunits with distinct structure and function, troponin T, troponin I, and troponin C, and their accurate and complex intermolecular interaction in response to the rapid rise and fall of Ca(2+) in cardiomyocytes plays a key role in maintaining the normal cardiac pump function. More than 200 mutations in the cardiac sarcomeric proteins, including myosin heavy and light chains, actin, troponin, tropomyosin, myosin-binding protein-C, and titin/connectin, have been found to cause various types of cardiomyopathy in human since 1990, and more than 60 mutations in human cardiac troponin subunits have been identified in dilated, hypertrophic, and restrictive forms of cardiomyopathy. In this review, we have focused on the mutations in the genes for human cardiac troponin subunits and discussed their functional consequences that might be involved in the primary mechanisms for the pathogenesis of these different types of cardiomyopathy.