We have synthesized ZnO nanocrystals of different sizes (25–41nm) using the sol–gel method and characterized them using different techniques such as: transmission electron microscopy (TEM) and X-ray diffraction (XRD). Raman spectra of different sizes of ZnO nanocrystals were recorded at two excitation wavelengths, 514 and 647nm, in the spectral range 300–1200cm−1. The vibrational modes were assigned on the basis of group theory analysis. The influence of mean crystallite size on the strength of the electron–phonon coupling is experimentally estimated by the variation of relative intensities of second order Raman band and the first order Raman band for ZnO nanocrystals of different sizes. We found that the intensity ratio of the 2E2 and 1E2 Raman bands decreases almost linearly for both excitation wavelengths with decreasing crystallite size, which reveals that the Fröhlich interaction plays a dominant role in the electron–phonon coupling of the ZnO nanocrystals.
Read full abstract