BackgroundThis paper tests Vrba's resource-use hypothesis, which predicts that generalist species have lower specialization and extinction rates than specialists, using the 879 species of South American mammals. We tested several predictions about this hypothesis using the biomic specialization index (BSI) for each species, which is based on its geographical range within different climate-zones. The four predictions tested are: (1) there is a high frequency of species restricted to a single biome, which henceforth are referred to as stenobiomic species, (2) certain clades are more stenobiomic than others, (3) there is a higher proportion of biomic specialists in biomes that underwent through major expansion-contraction alternation due to the glacial-interglacial cycles, (4) certain combinations of inhabited biomes occur more frequently among species than do others.ResultsOur results are consistent with these predictions. (1) We found that 42 % of the species inhabit only one biome. (2) There are more generalists among species of Carnivora than in clades of herbivores. However, Artiodactyla, shows a distribution along the specialization gradient different from the one expected. (3) Biomic specialists are predominant in tropical rainforest and desert biomes. Nevertheless, we found some differences between small and large mammals in relation to these results. Stenobiomic species of micromammalian clades are more abundant in most biomes than expected by chance, while in the case of macromammalian clades stenobiomic species are more frequent than expected in tropical rainforest, tropical deciduous woodland and desert biomes only. (4) The most frequent combinations of inhabited biomes among the South American mammals are those with few biomes, i.e., the ones that suffered a higher rate of vicariance due to climatic cycles.ConclusionOur results agree with the resource-use hypothesis and, therefore, with a major role of the past climatic changes as drivers of mammalian evolution. Nevertheless, deviations from the expectations indicate the importance of differences in reproductive traits and paleobiogeographic history for the macroevolutionary processes involved. In the case of South American mammals, the Pliocene Great American Biotic Interchange strongly influences the ecological characteristics of this assemblage. Furthermore, the Andes have acted as a fertile ground for speciation in environments prone to vicariance. Finally, the micromammals appear as more prone to biomic specialization than larger species. These factors are responsible for some of the differences found between South America and Africa in the studied pattern. For example, the extensive South American mountain ranges favour a higher number of combinations of inhabited biomes in comparison with Africa.