Lecithin is potentially used in various food applications due to its emulsifying and stabilizing properties. However, overconsumption of lecithin may cause several diseases and side effects in the human body. Therefore, in this study, we used a blend of guar and acacia gums as a partial replacement for lecithin in white chocolate. Different concentrations of the blend (25–75 %) were used to replace lecithin and white chocolate containing 75 % lecithin, 15 % acacia gum and 10 % guar gum blend (75GAGL) exhibited comparable rheological properties as compared to the control sample. Consequently, the selected sample was characterized using different analytical techniques. FTIR results showed a similar peak of various functional groups of sugars, proteins, and uronic acids for 75GAGL and control samples. Physicochemical analysis and shelf-life evaluation were conducted during the 150-day storage period. Lower fat content (41.64 ± 1.23 %) and highest protein content (5.41 ± 0.08 %) were observed for the 75AGGL sample as compared to the control on the 0th day and a non-significant difference was shown on the 150th day. Overall, physicochemical data revealed minor changes in the nutritional aspects for both control and 75GAGL samples. DSC and TGA data proved that 75GAGL and the control sample have similar heat stability (melting point) and the peak was observed at 36.93 °C for 75GAGL and 37.11 °C for control. The addition of gum blend in chocolate 75GAGL (9985 g force in 2.24 Sec) displayed similar hardness as compared to the control sample (12,448 g force in 2.68 Sec). Results of texture analysis for 5AGGL and control samples exposed similar hardness values. Furthermore, the color assessment showed a non-significant difference in color values of both chocolates during 150 days of storage. 75AGGL received comparable scores to the control sample during sensory analysis. Overall, it could be proven that plant-derived gums can be effectively used for the partial replacement of lecithin for white chocolate production with desirable textural and sensory properties.