Insomnia disorder is a significant global health concern. This research aimed to explore the pathogenesis of insomnia disorder using static and dynamic degree centrality methods at the voxel level. A total of 29 patients diagnosed with insomnia disorder and 28 healthy controls were ultimately included to examine differences in degree centrality between the two groups. Additionally, the relationship between altered degree centrality values and various clinical indicators was analyzed. The results revealed that patients with insomnia disorder exhibited higher static degree centrality in brain regions associated with sensory processing, such as the occipital gyrus, inferior temporal gyrus, and supramarginal gyrus. In contrast, lower static degree centrality was observed in the parahippocampal gyrus, amygdala, insula, and thalamus. Changes in dynamic degree centrality were identified in regions including the parahippocampal gyrus, anterior cingulum, medial superior frontal gyrus, inferior parietal gyrus, and precuneus. Notably, a negative correlation was found between dynamic degree centrality in the inferior parietal gyrus and the Pittsburgh Sleep Quality Index, while a positive correlation was observed between static degree centrality in the inferior temporal gyrus and the Hamilton Depression Scale. These findings suggest that dysfunction in centrality within the sensory processing cortex and subcortical nuclei may be associated with the sleep-wake imbalance in individuals with insomnia disorder, contributing to our understanding of hyperarousal mechanisms in insomnia. Moreover, the abnormalities observed in the default mode network and the salience network provide insights into understanding the neuropathogenesis of insomnia from both static and dynamic centrality perspectives. The clinical trial registration number: ChiCTR2200058768. Date: 2022-04-16.
Read full abstract