AbstractThere is continuous research into driving cycles (DCs) as researchers across the globe seek to define driving characteristics, energy consumption, and emissions in a local context. For decades, data collection for the development of DCs has been conducted in three ways: chase car, instrumented vehicle, or a combination of both. Many studies have moved on to cheap and easily available global positioning system (GPS) technology, while others record vehicle data directly through the on‐board diagnostics (OBD) port. However, there are major limitations to GPS data collection such as frequent inaccuracies and loss of coverage in urban environments. For this reason, both OBD and GPS vehicle speed data have been collected. Then, the recorded data has been analysed to capture any differences in sampling rates and dropping data. Finally, basic DCs were created from smoothed GPS and OBD data and compared. DCs were developed with a microtrip‐based method, and a relative error term was used to compare candidate DCs to the collected data. DCs were compared based on kinematic characteristic parameters that are most used in the field. The results of this study could be used to assess the validity of GPS‐based DCs compared to OBD cycles using low‐cost devices.