Elevated levels of reactive oxygen species can cause oxidative stress, which could lead to membrane damage, decreased fertility, and spermatozoan morphological deformities. Antioxidants can be supplemented to reduce the impacts of oxidative stress. The objective of this study was to determine the effects of supplementing quercetin (0.25, 0.50, 0.75 mM) during the thawing and incubation of frozen-thawed boar semen on spermatozoan characteristics, IVF kinetics (n = 400) and subsequent embryonic development (n = 1340). Spermatozoa were evaluated for motility, viability, and membrane lipid peroxidation levels at 0, 2, 4, 6, 8, and 10 h after thawing. Embryos were evaluated for IVF kinetics 12 h after IVF (penetration, polyspermy, male pronucleus formation, IVF efficiency) and cleavage and blastocyst formation at 48 h and 144 h after IVF, respectively. Spermatozoa supplemented with 0.25 mM quercetin had significantly higher (P < 0.05) motility (51.67±8.50 %) and percent of viable cells (61.21 ± 2.44 %) compared to all other treatments at 10 h after thawing, in addition to having significantly (P < 0.05) lower levels of hydroperoxide (3.38 ± 0.88 μM/107cells). There were no differences in penetration rates and male pronucleus formation between treatment groups. Supplementation of quercetin significantly decreased (P < 0.05) polyspermy and significantly increased (P < 0.05) the percentage of embryos reaching blastocyst stage of development by 144 h after IVF compared to no supplementation. Results indicated that supplementing frozen-thawed boar semen with 0.25 mM quercetin improves sperm characteristics up to 10 h after thawing and decreases polyspermy while improving early embryonic development in pigs.
Read full abstract