Abstract

The present experiments were conducted to optimize in vitro fertilization conditions for zona pellucida-free (ZP-free) oocytes and their subsequent development. The results demonstrated that: (1) maximal fertilization efficiency was achieved at 200 spermatozoa per ZP-free oocyte. At this sperm dose, there were no significant differences in penetration rates and polyspermy rates from controls (zona-intact oocytes with 1000 spermatozoa/oocyte), indicating that ZPs of in vitro matured pig oocytes failed to block polyspermy during in vitro fertilization. (2) In vitro development of zygotes from ZP-free oocytes showed that there was no difference in cleavage rates. The blastocyst rate was slightly lower in the ZP-free group than the control. However, there was no difference in cell number per blastocyst between the control and the ZP-free group. (3) Examination of acrosome status by a specific fluorescein isothiocyanate-conjugated peanut agglutinin (FITC-PNA) staining procedure revealed that frozen–thawed pig spermatozoa could undergo acrosome reaction and penetrate oocytes without induction by ZP. These data suggested that there are alternative mechanistic pathways for acrosome reaction induction during the fertilization process than the widely accepted sperm–zona receptor models. Finally, the viability of ZP-free derived embryos was demonstrated by full-term development and the delivery of healthy piglets following embryo transfer. In conclusion, the present experiments showed for the first time in farm animals, that normal embryos could be produced by in vitro fertilization of ZP-free oocytes in optimized conditions and that they could develop normally to full-term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.