SummaryWe show that difference-based methods can be used to construct simple and explicit estimators of error covariance and autoregressive parameters in nonparametric regression with time series errors. When the error process is Gaussian our estimators are efficient, but they are available well beyond the Gaussian case. As an illustration of their usefulness we show that difference-based estimators can be used to produce a simplified version of time series cross-validation. This new approach produces a bandwidth selector that is equivalent, to both first and second orders, to that given by the full time series cross-validation algorithm. Other applications of difference-based methods are to variance estimation and construction of confidence bands in nonparametric regression.
Read full abstract