Herein a practical strategy for augmenting immune activation in transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) is presented. Pluronic F127 (PF127) is incorporated with Lipiodol (LPD) to achieve safe and effective delivery of therapeutic agents during transcatheter intra-arterial (IA)local delivery. Enhanced emulsion stability, IA infusion, embolic effect, safety, pharmacokinetics, and tumor response of Doxorubicin loaded PF127-LPD (Dox-PF127-LPD) for TACE in both in vitro and in vivo preclinical VX2 liver cancer rabbit model and N1S1 HCC rat model are demonstrated. Then, transcatheter arterial chemo-immuno-embolization (TACIE) combining TACE and local delivery of immune adjuvant (TLR9 agonist CpG oligodeoxynucleotide) is successfully performed using CpG-loaded Dox-PF127-LPD. Concurrent and safe local delivery of CpG and TACE during TACIE demonstrate leveraged TACE-induced immunogenic tumor microenvironment and augment systemic anti-tumor immunity in syngeneic N1S1 HCC rat model. Finally, the broad utility and enhanced therapeutic efficacy of TACIE are validated in the diethylnitrosamine-induced rat HCC model. TACIE using clinically established protocols and materials shall be a convenient and powerful therapeutic approach that can be translated to patients with HCC. The robust anti-cancer immunity and tumor regression of TACIE, along with its favorable safety profile, indicate its potential as a novel localized combination immunotherapy for HCC treatment.
Read full abstract