Several plasticizing chemicals induce endocrine disrupting effects in humans, and the indoor environment is suggested to be a source of exposure. As children are particularly vulnerable to the effects from exposure to endocrine disrupting chemicals (EDCs), it is essential to monitor exposure to EDCs such as phthalates and non-phthalate plasticizers in indoor environments intended for use by children. The aim of this study was to assess everyday plasticizer exposure among preschool-aged children in Sweden by measuring urinary plasticizer metabolite concentrations. In addition, it was investigated whether the concentrations would be altered as a result of the children spending part of the day at preschool, in comparison with weekend exposure, when they may spend more time in home environments or engage in various weekend and leisure activities. For this purpose, fourteen metabolites from eight phthalates (di-ethylhexyl phthalate, DEHP; di-n-butyl phthalate, DnBP; di-isobutyl phthalate, DiBP; butyl-benzyl phthalate, BBzP; di-iso-nonyl phthalate, DiNP; di-propylheptyl phthalate, DPHP; di-iso-decyl phthalate, DiDP; and di-ethyl phthalate, DEP) and one non-phthalate plasticizer (di-isononyl cyclohexane 1,2-dicarboxylate, DiNCH) were measured in 206 urine samples collected at four occasions, i.e. twice during the winter and twice during the spring from 54 children (mean5.1 years, SD 0.94) enrolled at eight preschools in Sweden. A detection frequency (DF) of 99.9% for the 14 metabolites indicates a widespread exposure to plasticizers among children in Sweden. Compared to previous Swedish and international studies performed during approximately the same time period, high urinary concentrations of monobenzyl phthalate (MBzP), a metabolite from the strictly regulated BBzP, were measured in this study (median 17ng/mL). Overall, high urinary phthalate metabolite concentrations were observed in this study compared to the US CDC-NHANES from the same time period and similar age-group. Compared to European studies, however, similar concentrations were observed for most metabolites and the urinary concentrations from few participating children exceeded the human biomonitoring guidance values (HBM-GV) for children. After days with preschool attendance, lower urinary concentrations of metabolites originating from DEP and phthalates that are strictly regulated within the EU REACH legislation (DEHP, DnBP, and DiBP) and higher concentrations of metabolites originating from DiNP, DPHP, and DiDP, i.e. less or non-regulated phthalates were found compared the urinary concentrations of these metabolites in weekends. This may indicate that factors in the indoor environment itself are important for the extent of the plasticizer exposure. All the analyzed metabolites were measured in lower concentrations in urine collected from children attending preschools built or renovated after the year 2000, while no seasonal differences were observed in this study.
Read full abstract