Organophosphate triesters (tri-OPEs) threaten human health through dietary exposure, but little is known about their feed-to-food transfer and in vivo behavior in farm animals. Herein 135 laying hens were fed with contaminated feed (control group, low-level group and high-level group) to elucidate the bioaccumulation, distribution, and metabolism of the six most commonly reported tri-OPEs. The storage (breast muscle), metabolism and mobilization (liver and blood) and non-invasive (feather) tissues were collected. The exposure-increase (D1∼14) and depuration-decrease (D15∼42) trends indicated that feed exposure caused tri-OPE accumulation in animal tissues. Tissue-specific and moiety-specific behavior was observed for tri-OPEs. The highest transfer factor (TF) and transfer rate (TR) were observed in liver (TF: 14.8%∼82.3%; TR: 4.40%∼24.5%), followed by feather, breast muscle, and blood. Tris(2-chloroisopropyl) phosphate (TCIPP) had the longest half-life in feather (72.2 days), while triphenyl phosphate (TPhP) showed the shortest half-life in liver (0.41 days). Tri-OPEs’ major metabolites (organophosphate diesters, di-OPEs) were simultaneously studied, which exhibited dose-dependent and time-dependent variations following administration. In breast muscle, the inclusion of di-OPEs resulted in TF increases of 735%, 1108%, 798%, and 286% than considering TCIPP, tributyl phosphate, tris(2-butoxyethyl) phosphate and tris(2-ethylhexyl) phosphate alone. Feather was more of a proxy of birds’ long-term exposure to tri-OPEs, while short-term exposure was better reflected by di-OPEs. Both experimental and in silico modeling methods validated aryl-functional group facilitated the initial accumulation and metabolism of TPhP in the avian liver compared to other moiety-substituted tri-OPEs.
Read full abstract