Abstract
The occurrence and composition profiles of 13 triester organophosphate flame retardants and their three diester metabolites in river water, wastewater, and tap water in China were studied. Most target organophosphate esters (OPEs) were found in water samples, with average concentrations of 787 ng/L for triethyl phosphate (TEP) and 0.1 ng/L for tripropyl phosphate (TPP) in wastewater, 1.48 × 103 ng/L for TEP and 0.12 ng/L for tripentyl phosphate (TPeP) in river water, and 15.5 ng/L for tris(2-chloroethyl) phosphate (TCEP) and 0.08 ng/L for tritolyl phosphate (TMPP) in tap water. TEP was the most abundant compound among the detected OPEs in all water types. The exposure of zebrafish embryos showed negligible effects of TEP, triphenyl phosphate (TPHP), and diphenyl phosphate (DPHP), while mixed solutions that mimic river water and wastewater composition disturbed the development of embryos and led to the altered transcription of genes relating to the hypothalamic-pituitary-thyroid (HPT) axis. In addition, the binding affinity between OPEs and a thyroid hormone receptor (TRβ) protein was further investigated by molecular docking modeling, which helped to estimate the effects of OPEs on TRβ. This research provides experimental and theoretical evidence for the ecotoxicological effects of OPEs in aquatic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.